
Predictive Analysis
Aamodini Gupta,1 Bill Zheng,1 Marc Lee,1 and Naveen Sathiyanathan1

STAT 430 (Fall 2018) - Group 4

(Dated: 20 December 2018)

The objective of this project was to explore the application of deep learning in the analysis of limit order books.
Specifically, the target was to predict the direction of movement of VWAP smoothed over 60 seconds. Deep learning
algorithms including fully connected network, CNN, RNN and hierarchical RNN were applied. Randomized grid
search was used for hyper parameter tuning and the generalization of each model was measured on a hold-out set and
the best set of hyper parameters were identified. It was found that different methods perform better for different tickers.
Among the algorithms that were tested, hierarchical recurrent neural network model performed the best on ticker 1 in
predicting the direction of movement of VWAP. The results were compared to that of shallow machine learning models
such as random forest, naive Bayes, conditional inference trees, XGBoost, etc. It was observed that shallow machine
learning algorithms perform worse than random guess.

I. INTRODUCTION

Since the stock market was introduced to the world,
predicting the Stock Market has been a one of the most
famous goals of investors. In the market, more than billions
of dollars are traded with the hope of investors to make profits
from their decisions. Similar to the bitcoins discussed in the
previous project, the stock trading is run by investors order
made in less than a second period. As the market fluctuates
everyday, entire companies rise and fall daily based on the
different behaviors of the market.

It is no wonder that the Stock Market and its associated
challenges are now publicly open and throw the questions.
The 2008 financial crisis was an example, as evidenced by the
media based on the financial market crash. If there was a com-
mon theme among those media sources, it was that few people
knew how the market worked or reacted. So, it is highly be-
lieved that a better understanding of stock market prediction
might help in the case of similar events in the future.

II. DATA DESCRIPTION

The dataset contained information directly from the Ex-
change feed on the 10 levels of buy/sell prices of 4 different
futures contracts (denoted as Tickers 1-4) in a 24 hour period.
Each level gave three pieces of information - the price, con-
tract, and the number of orders. Buy/Sell is also specified in
the dataset. The timestamp was in the format “YYYYMMD-
DHHMMSSMMM” where the last 3 digits were milliseconds,
the next 2 were seconds, the next 2 were minutes and the 2 af-
ter that were hours.

The data sets for each ticker had different number of rows
within the same day. Therefore, it can be concluded that the
liquidities are different. Number of rows of raw data for each
stock’s ticker can be found below:

Ticker Number of Rows Number of Labels
1 3355436 71192
2 2018898 59818
3 3286516 67389
4 1071070 58333

There were no missing values within each of the datasets,
but as the dataset was merged column-wise based on the
timestamp, the unique timestamps did not match. In this case
missing values were imputed using time series interpolation.

III. EXPLORATORY ANALYSIS

Tick data was very dense, which made visualization very
difficult. Also there could be multiple values of price for buy
and sell side within the same second. A simple visualization
of the first minute of tick data for ticker 1 on the given trading
day could be found below.

FIG. 1. Buy and Sell.

We observed that despite the richness of the data set, ticks
were recorded between discrete price points with an interval
of $0.25.

The data set was then aggregated to 1000 milliseconds and
relevant features were created (discussed in feature engineer-

2

ing). A simple visualization of features from the first 1 minute
of ticker 1 can be found below:

FIG. 2. Close, High, Low and Open Prices for Ticker 1 against Time.

It was also observed that the tickers are in different scales.
In most cases the variation in close price was not comparable
to the scale of the close price. Therefore, scaling of variables
was found to be necessary for faster learning and when regu-
larization was used.

FIG. 3. Unscaled Close Prices against Time.

The close prices are brought to approximately the same
scale after scaling. The plot of scaled features subsetted for
first minute can be found below.

IV. FEATURE ENGINEERING

In order to get the useful features from the limit order
book raw data, the format of timestamp was preprocessed
from millisecond to second. Level 1 was expected to contain
most of the information about the behavior of the ticker in
market. Also, usage of levels 2-10 might add noise to the
analysis. Therefore, only level 1 was processed and used for
downstream analysis for each ticker.

FIG. 4. Scaled Close Prices against Time.

It was observed that trading occurred throughout the day.
There was no missing data in the data set. However, multiple
timestamps were missing in the aggregated data. Also, there
were multiple timestamps that were available in one ticker
data but not in the others’. Time series interpolation was used
to impute these missing timestamps.

A. Time Bars

All 4 tickers, were aggregated to 1000 milliseconds to
get time bars with OHLCV. Missing values were filled for
all tickers because parametric models like neural networks
cannot handle missing data. Data from level 1 which had the
smallest price for sell side and largest price for buy side was
used to calculate OHLCV.

V. METHODOLOGY AND ANALYSIS

Discriminative machine learning and deep learning models
capture patterns that differentiate between the output classes.
No universal theory or guideline exists for the analysis of
limit order book data using statistical or machine learning
models. The structure of data generating process in limit
order book is unknown. Therefore, the true underlying model
is assumed to be unknown. Therefore, errors on validation
and test sets were estimated to understand the generalization
of models. Hyper parameter tuning was performed and
empirical error (bias + variance) was compared for model
selection.

TotalError = Errorbias +Errorvariance

3

A. Train-Validation-Test based on Time

The data set was preprocessed by capturing information
from level 1 only. After creating features such as open, close,
high, low and volume, the data set was split into train, test and
validation sets based on time as:

• Train: Data from first 60% of the day
Validation: Data from 60-80% of the day
Test: Data from last 20% of the day

It was assumed that the test set will be a representative of
the next day’s data. However, this assumption was relaxed in
ticker 2 where the model accuracy on test set was worse than
that of a random guess (33%). In such cases it was assumed
that the validation set acts as a representative sample for the
next day.

B. Model Training Scheme

The following set of hyper parameters were tuned during
the analysis:

• Fully connected layers:

– Number of neurons

– Dropout

• CNN:

– Number of filters in each 2D convolution layers

– Number of neurons in dense layer

• RNN:

– LSTM units

– Number of neurons in dense layer

• HNN:

– Column encoding units

– Row encoding units

C. Methods Used

1. Fully Connected Layers

The fully connected layers learn features from each of the
previous layers. There is typically a linear operation, like
weighted averages, that connects the input to the output. This
is then followed by a nonlinear activation.

2. CNN

Convolution is a window-based filtering operation which
leads to aggregated features from a tensor with 1 or more di-
mensions. Convolution layers act as feature extractors for the
downstream tasks such as classification. Different types of fil-
ters can be applied and stacked together for downstream layers
to learn from.

3. RNN

It is called Recurrent because the way it perform is recur-
sive, having a backward connection, unlike other feed-forward
neural networks. In other word, it has a “memory” which can
trace and keep information about the computations done so
far.

4. Hierarchical RNN

Hierarchical recurrent neural networks are similar to recur-
rent neural networks - they perform encoding. However, they
perform encoding hierarchically between columns and rows.
Structures learnt by the network can be quite different from
that of recurrent neural networks.

5. Shallow Machine Learning Algorithms

Algorithms such as naive Bayes, linear discriminant analy-
sis, SVM, conditional inference tree, random forest and XG-
Boost were used to predict the outcome based on given pre-
dictors. However, their architectures considered each obser-
vation independently for training and prediction, which was
not robust for financial machine learning.

D. Hyper-Parameter Tuning

Neural networks are susceptible to variation in perfor-
mance based on the hyper parameters. It was observed that
different model hyper parameters led to significantly different
performance and generalization. The following sets of hyper
parameters were tuned:

4

1. Fully Connected Layers

2. CNN

3. RNN

4. Hierarchical RNN

Example of Training

Models weights were initialized randomly. Model train-
ing is expected improve the weights in order to decrease
the loss. The performance of model training was tracked
on training and validation sets. A plot of training errors vs
epochs (number of time the data was used for learning) can
be found below:

This model showed signs of overfitting, although there were
other models which showed stable behavior across epochs.

VI. RESULTS

Final Model Train Acc Val Acc Test Acc
TICKER 1 HRNN 0.3988 0.3678 0.3804965
TICKER 2 RNN (LSTM) 0.4180 0.3573 0.3291597
TICKER 3 HRNN 0.4452 0.3837 0.4117015
TICKER 4 HRNN 0.3900 0.3112 0.3433448

Please refer Appendix for results of shallow machine learn-
ing algorithms.

A. Scope for Improvement

• Shallow machine learning models such as random for-
est and XGBoost were tried, but their accuracies were
worse than that of random guess. Therefore, their pre-
dictions were considered unreliable and they were re-
moved from the analysis. However, this gave us a clue
that the features are not very predictive.

• The current set of features have low predictive power.
Additional features such as news (text), forecasts that
might capture the relationship to the stock’s moving di-
rection would fit a better model.

• Applying ‘voting ensemble’ method to a classes pre-
dicted by different models may improve accuracy.

• Trying out other neural network architectures, tradi-
tional machine learning methods to have a heteroge-
neous set of predictions and stacking their predictions
may improve accuracy.

• Tuning of hyperparameters took lot of time. Scope for
experimentation was low.

5

APPENDIX

1. Project Work�ow

2. Sample R code for the overall �ow

1 me_ t r a i n <− a p p l y (t r a i n D a t [, −which (co lnames (
t r a i n D a t) == " d i r e c t i o n ")] , 2 , mean)

2 sd _ t r a i n <− a p p l y (t r a i n D a t [, −which (co lnames (
t r a i n D a t) == " d i r e c t i o n ")] , 2 , sd)

3 f o r (name i n names (me_ t r a i n)) {

4 t r a i n D a t [, name] <− (t r a i n D a t [, name] − me_
t r a i n [name]) / sd _ t r a i n [name]

5 t e s t D a t [, name] <− (t e s t D a t [, name] − me_ t r a i n [
name]) / sd _ t r a i n [name]

6 v a l D a t [, name] <− (v a l D a t [, name] − me_ t r a i n [
name]) / sd _ t r a i n [name]

7 }
8

9 t r a i n D a t $ d i r e c t i o n <− as . f a c t o r (t r a i n D a t $
d i r e c t i o n)

10 t e s t D a t $ d i r e c t i o n <− as . f a c t o r (t e s t D a t $ d i r e c t i o n)
11 v a l D a t $ d i r e c t i o n <− as . f a c t o r (v a l D a t $ d i r e c t i o n)
12

13 X_ d a t a _ t r a i n <− as . m a t r i x (t r a i n D a t [, −which (
co lnames (t r a i n D a t) == " d i r e c t i o n ")])

14 Y_ d a t a _ t r a i n <− as . v e c t o r (t r a i n D a t $ d i r e c t i o n)
15 X_ d a t a _ v a l <− as . m a t r i x (v a l D a t [, −which (co lnames (

v a l D a t) == " d i r e c t i o n ")])
16 Y_ d a t a _ v a l <− as . v e c t o r (v a l D a t $ d i r e c t i o n)
17 X_ d a t a _ t e s t <− as . m a t r i x (t e s t D a t [, −which (

co lnames (t e s t D a t) == " d i r e c t i o n ")])
18 Y_ d a t a _ t e s t <− as . v e c t o r (t e s t D a t $ d i r e c t i o n)
19

20 s o u r c e (" r u n s _ cnn . R")
21 s o u r c e (" r u n s _ hrnn . R")
22 saveRDS (me_ t r a i n , p a s t e 0 (" mean_ " , t i c k e r , " . Rds ")

)
23 saveRDS (sd _ t r a i n , p a s t e 0 (" sd _ " , t i c k e r , " . Rds "))

3. Sample R code for building maintaining Tensor�ow runs
of hierarchical recurrent neural network

1 r u n s <− t u n i n g _ run (" model ing _ hrnn . R" , f l a g s = l i s t (
2 row_ h id den = r e v (c (8 , 10 , 15 , 20)) , c o l _ h id de n =

r e v (c (8 , 10 , 15 , 20))
3) , sample = 0 . 1 , c o n f i r m = F)

4. Sample R code for building hierarchical recurrent neural
network

1 model <− k e r a s _ model _ s e q u e n t i a l () %>%
2

3 model %>% compi l e (
4 l o s s = " c a t e g o r i c a l _ c r o s s e n t r o p y " ,
5 o p t i m i z e r = o p t i m i z e r _ rmsprop (l r = 1e−4) ,
6 m e t r i c s = c (" acc ")
7)
8

9 # ############
10 # run model #
11 # ############
12 b a t c h _ s i z e <− 100
13 p r i n t (w)
14 h i s <− model %>%
15 f i t _ g e n e r a t o r (
16 s a m p l i n g _ g e n e r a t o r 0 (
17 X_ d a t a _ t r a i n , Y_ d a t a _ t r a i n , b a t c h _ s i z e =

b a t c h _ s i z e , w=w) ,
18 s t e p s _ p e r _ epoch = f l o o r ((nrow (X_ d a t a _ t r a i n)−w

+1) / b a t c h _ s i z e) ,
19 epochs = 10 ,
20 c a l l b a c k s = l i s t (c h e c k P o i n t , r educeLr , l o g g e r ,

e a r l y S t o p p i n g) ,
21 v a l i d a t i o n _ d a t a = s a m p l i ng _ g e n e r a t o r 0 (
22 X_ d a t a _ va l , Y_ d a t a _ va l , b a t c h _ s i z e = b a t c h _

s i z e , w=w) ,
23 v a l i d a t i o n _ s t e p s = f l o o r ((nrow (X_ d a t a _ v a l)−w+1)

/ b a t c h _ s i z e))
24 p l o t (h i s)

6

5. Sample R code for prediction on test set

1 me_ t r a i n <− readRDS (f i l e . p a t h (t r a i n _mean_ sd _ d i r
, p a s t e 0 (" mean_ " , t i c k e r , " . Rds ")))

2 sd _ t r a i n <− readRDS (f i l e . p a t h (t r a i n _mean_ sd _ d i r
, p a s t e 0 (" sd _ " , t i c k e r , " . Rds ")))

3 X_ d a t a _ t e s t <− as . m a t r i x (r eqd _ t i c k e r _ d f [, 4 :
n c o l (r eqd _ t i c k e r _ d f)])

4 f o r (c o l i n names (me_ t r a i n)) {
5 X_ d a t a _ t e s t [, c o l] <− (X_ d a t a _ t e s t [, c o l] −

me_ t r a i n [c o l]) / sd _ t r a i n [c o l]
6 }
7

8

9

10 # Loading t h e model and p r e d i c t i n g
11 model <− l o a d _ model _ hdf5 (f i l e . p a t h (h5_ models _

d i r , models [t i c k e r]))
12 b a t c h _ s i z e <− 100
13 w <− 60
14 p red _ l i s [[t i c k e r]] <− g e t _ p r e d i c t i o n s (X_ d a t a _

t e s t , w, b a t c h _ s i z e , t i c k e r)

6. References

• The Data Source
AlgoSeek

• Reference Book
Deep Learning with R by Francois Chollet, J.J. Allaire

7. Shallow machine learning on Ticker 1

Model Train Acc Val Acc
Linear discriminant 0.287 0.277

analysis
SVM No result No result

(high run time) (high run time)
C-tree 0.291 0.279

XGBoost 0.285 (Not measured)
Random forest 0.285 0.278

