
Predictive Analysis Using The Bitcoin Minute Data
Aamodini Gupta,1 Bill Zheng,1 Marc Lee,1 and Naveen Sathiyanathan1

STAT 430 (Fall 2018) - Group 4

(Dated: 30 October 2018)

Classical machine learning algorithms including Logistic Regression, Random Forest, and Gradient Boosting Machine
were applied as well as the additional algorithms such as Extremely Randomized Trees and Stacked Ensemble meth-
ods. Purged k-fold cross validation and sequential bootstrap sampling were adopted for hyperparameter tuning and
testing the generalization of the model. It was found that the Stacked Ensemble method performed the best among the
algorithms tested in terms of predicting the direction of the bitcoin price on returns.

I. INTRODUCTION

Bitcoin is a cryptocurrency - a form of decentralized digital
currency that can be sent directly from users to users on
a peer-to-peer bitcoin network without going through any
intermediate financial institutions. The central idea of Bitcoin
was implemented by a group of pseudonymous people called
Satoshi Nakamoto in 2009.

Transactions of bitcoins from account to account can be
recognized globally in a matter of seconds and securely set-
tled within an hour, regardless of users’ geographical location
or jurisdiction. Bitcoin also has its own supply and demand
market and the price vibrates substantially throughout the
time, with fluctuations sometimes caused by external factors.

Bitcoin’s growing trade volume and its fluctuating nature
have sparked our interest in its study. In this project, the effect
of volume and close price on returns was tested. The sug-
gested model was trained to predict the direction of bitcoin
price for a specified window (i.e test if the price will hit the
upper barrier or not) that is calculated by the target returns.

II. DATA DESCRIPTION

The dataset was collected from Kaggle. It records bitcoin
prices from January 2012 to July 2018 with 1-minute inter-
vals, comprising of 1,922,030 observations and 8 variables.
The observations contain minute-to-minute updates of Open,
High, Low, Close prices, Volume in BTC and indicated cur-
rency, and weighted bitcoin price. Favorably, there was no
missing data, so that any imputation method was not imple-
mented. The dataset was provided in the structured time bars
format. A summary of the variables was shown as below:

• Timestamp: Timestamp in Unix time format (in min-
utes).

• Open: Bitcoin price in currency units at time period
open.

• High: Highest bitcoin price in currency units during
time period.

• Low: Lowest bitcoin price in currency units during time
period.

• Close: Bitcoin price in currency units at time period
close.

• Volume_(BTC): Volume of BTC transacted in time pe-
riod.

• Volume_(Currency): Volume of currency transacted in
time period.

• Weighted_Price (VWAP): Volume-weighted average
price.

III. EXPLORATORY ANALYSIS

At the first glance of the dataset, it was evident that there
was not much variability in the early parts of the data.

FIG. 1. Close Price vsTime.

In order to conduct analysis on the direction of price, it was
important for the dataset to be highly volatile. Therefore, the
focus of the project was shifted to the latter part of the dataset.
The data was subsetted by taking the lowest close price, and
considering all the timestamps after that drop. The updated
dataset exhibited a lot more variability as evident in Figure 2.

One of the consequences of subsetting was that the data
reduced from 1922030 observations to 511572 observations
- this is still a substantial amount of information, so the
analysis was conducted on this dataset. Note that there were
no missing values in the dataset. It is also evident in Figure 2
that the dataset can be considered to be a non-stationary data
because it does not tend to converge towards a certain level.

As described earlier, these observations were within even
1-minute intervals, therefore unit bars were used in order to

2

FIG. 2. Close Price vsTime.

find more interesting patterns. In order to construct the unit
bars, the bar_unit() function was created that takes in 2 inputs
- the data and the unit - which are both specified by the user.
For this report, the unit threshold was set to 7 ∗ 107 and the
size of the unit bars came out to be 81,169

IV. FEATURE ENGINEERING

A. Fractionally Differentiated Features

In order to get meaningful information from the data,
it needed to be transformed in a way that makes the data
series stationary while preserving as much of the memory as
possible. To do so, an input for the amount of differentiation
that was required (the coefficient d).

The fixed-window method was implemented to get the op-
timal value for the coefficient d for which the fractionally dif-
ferentiated series is stationary. The window was fixed at a
value of 10. The smallest value of d that passed both the Effi-
cient Unit Root Test and the KPSS Test (test for stationarity)
was used. The amount of differentiation that was used for the
purpose of this analysis was 0.96.

B. Labeling

Since the aim of this project is to predict direction of the
prices, the triple barrier method of labelling was used. This
path-dependent labelling technique included profit-taking and
stop-loss of [1,0] that was applied to only consider the upper
barrier. The label “1” was assigned if the upper bar is touched
first, while “0” was assigned otherwise.

C. Feature Matrix

To create this feature matrix, a function was defined:
get_feaMat(). The function output the following columns:

• Target variable (binary)

FIG. 3. All Target Returns on Fractionally Differentiated Series

FIG. 4. Hits Barrier: Target Returns on Fractionally Differentiated
Series

• Volume

• Close Price

• tFeat

• tLabel

The CUSUM filter was used to filter and track the unit bars
based on the events that occur at a defined threshold. The
matrix takes into consideration the volume traded in the de-
fined time windows(volume with CUSUM filters), fraction-
ally differentiated (close) price, and other features extracted
from time such as trend, seasonality, day of the week, hour of
the day. Having these features in one place as a matrix pro-
vided a convenient way of storing important information that
was needed to conduct further analysis in predicting the target
returns.

V. METHODOLOGY AND ANALYSIS

Using the feature matrix and the labels created, the data was
then sampled using the following two techniques:

3

A. Sequential Bootstrap

This technique was used to avoid the redundancies caused
by sampling with replacement. The sequential bootstrap es-
sentially makes draws according to a changing probability that
accounts for this redundancy. This method takes into consid-
eration the average uniqueness of an observation at a particu-
lar time and updates the probabilities so that the likelihood of
picking a repeated value decreases after every draw.

B. Purged k-fold Cross Validation

Cross validation was employed to determine the accuracy
and errors of the machine learning algorithm. The k-fold cross
validation generally fails in financial analysis due to the fact
that such observations cannot be assumed to be independent
and identically distributed, and data leakage could take place
if there was overlapping information between the training
and testing datasets. One of the approaches to avoid this was
to conduct a purged k-fold cross validation, which would
remove any observations whose labels were overlapped in
time between the training set and testing set. Some data from
the training set that follows immediately after (embargo) was
also excluded because of its high correlation with the testing
set.

After the initial setup, different techniques were introduced
to predict the target.

C. Ensemble Methods

Several ensemble methods were modeled in this project
in order to obtain a better predictive performance. Random
Forest was one of the ensemble methods tested, making it
easier for predicting the target variable using all the features
and indicate which features were the most important for the
prediction. The parameter tuning to increase the accuracy
was done in the later section.

Another method included in the analysis was the Stacked
Ensemble. According to the h2o documentation about
the algorithms, it stated that “Stacking, also called Super
Learning or Stacked Regression, is a class of algorithms that
involves training a second-level “meta-learner” to find the
optimal combination of the base learners. Unlike bagging and
boosting, the goal in stacking is to ensemble strong, diverse
sets of learners together.”.

Other methods tested were Gradient Boosting Machine
(GBM), Logistic Regression, and Extremely Randomized
Trees. Amongst these, the Logistic Regression was imple-
mented for the sake of comparing the traditional machine
learning algorithm to the ensemble methods.

D. Feature Importance Analysis

The feature importance analysis was conducted for the
purpose of verifying which features played the significant role
in predicting the target. Although the model and the function
in the analysis did not require dropping insignificant features,
this importance analysis was implemented to understand
the effect of the Volume and the Closed Price on returns as
indicated in the introduction.

Random Forest and Extremely Randomized Trees methods
were used to produce the scaled variable importances. In
addition to the scaled variable importances, the coefficient
of model outputs of the Random Forest and the Extremely
Randomized Trees was generated from the Stacked Ensemble
method.

FIG. 5. Scaled feature importance based on Random Forest

FIG. 6. Scaled feature importance based on Extremely Randomized
Trees

FIG. 7. Coefficient of model outputs in Stacked Ensemble

E. Hyper-Parameter Tuning

Randomized grid search method was applied on values h
and trgt for fracDiff and meta labelling respectively for tuning
the parameters to get optimal results, where h was a thresh-
old for the CUSUM filter and trgt was a threshold used to
return “0” or “1” in meta labeling. Models were built on folds
obtained from sequential bootstrap and purged k-fold cross-
validation. The average performance of the models on these

4

folds was compared to find the combination of parameters that
maximized the CV performance in accuracy. The idea was to
randomize the search with purged k-fold CV and to sample pa-
rameters from a distribution. With the correct input and com-
mands, it came up with the optimal returns and the window
size using the Grid search. The final parameters chosen by the
randomized grid search method were h= 228 and trgt = 5.25.

VI. RESULTS AND CONCLUSIONS

Train set predictions were calculated using the best model
chosen on the validation set using AUC. F1 was calculated on
the train set predictions and the threshold with largest F1 score
on train set was chosen for predicting classes on the train, vali-
dation and test sets. Using this threshold, the following results
were observed:

Dataset Model Metric Value
Test Logistic Regression AUC 0.504
Test Logistic Regression Accuracy 0.535
Test Random Forest AUC 0.797
Test Random Forest Accuracy 0.73
Test Stacked Ensemble AUC 0.881
Test Stacked Ensemble Accuracy 0.779

Compared to the Logistic Regression (traditional ML
methods), the Stacked Ensemble method performed a lot
better in predicting the direction of the price. It was observed
that the no-information rate in test set was 0.544. Logistic
regression performed close to random guess with an accuracy
of 0.535 and AUC of 0.504. Random forest performed
better than logistic regression with an accuracy of 0.73 and
AUC of 0.797. However, the stacked ensemble of extremely
randomized trees and random forest (excluding gradient
boosting machine, because its prediction was correlated
with that of random forest) outperformed these models with
an accuracy of 0.779. Refer to the figures 8, 9, 10, 11 to
see the lift and ROC curves for the training and validation sets.

VII. TEXT ANALYTICS

It is believed that news related to bitcoins drastically affects
the price of bitcoins. Also, there are multiple sources of news
articles about bitcoin prices because of the hype and myths
around bitcoin. During 2017-18 there were significant bit-
coin related events that led to positive and (mostly) negative
news about bitcoins. We performed an independent analysis
to study the effect of words used in news articles on the returns
of bitcoins on the next day. Text data was collected manually
from 50 different news articles. We assume that short term
effects of news are significant and long term effects are negli-
gible.

FIG. 8. Training Set Lift Curve

FIG. 9. Training Set ROC Curve

A. Text processing

50 randomly chosen news (38 distinct days between 15th
July 2017 and 26th June 2018) articles related to bitcoins were
considered and their dates of publication were recorded along
with the text. Standard text processing steps (removal of stop
words, punctuations and numbers, performing stemming)
were applied and the term document matrix was aggregated
to date level. Words that occurred in less than 3 documents
were dropped. Term-frequency inverse-document-frequency
(TF-IDF) transformation with document length normalization
was applied on the data set. This led to 38 observations of
1152 features. This data set was merged with the returns
of the next day. Finally, all variables were centered and scaled.

B. Modeling

Random forest with large number of trees was applied to
estimate the relative importance of variables. Simultaneously,

5

FIG. 10. Validation Set Lift Curve

FIG. 11. Cross Validation ROC Curve

a l1 regularized (lasso) linear regression model was built. This
forces a sparse coefficient matrix at higher penalties. Results
of both models were combined to understand the magnitude
and direction of effect of words on bitcoin returns. Summary
of important words identified by the model:

Positive Negative
Word Lasso Coefficient Word Lasso Coefficient
danger -0.0155 check 0.0150
ultim -0.0154 stabil 0.0118
blow -0.0086 less 0.0098
stupid -0.0078 japanes 0.0034
live -0.0072 solut 0.0027

VIII. SCOPE FOR IMPROVEMENT

The data set provided was already summarized in the form
of time bars. It did not contain tick data. Therefore, an
approximation was used to compute unit bars, which were
used in the downstream analysis.

Text predictors were proved to have significant effect on
the returns of next day. We were unable to add these features
to predict the binary label because of the high model run-time
with the reduced feature set.

Text analysis was performed without considering the
context of the words used in articles. Only bag-of-words
features were used. This can be improved by using better text
representation models such as word2vec.

Larger number of uncorrelated regression models such as
naive Bayes, linear discriminant analysis, etc. could be fit to
the data. This will enrich the stacked ensemble model, leading
to further increase in classification accuracy.

6

APPENDIX

• The Kaggle Data Source
https://www.kaggle.com/mczielinski/bitcoin-
historical-data

• R code for the overall flow.

1 hVec <− seq (1 0 , 300 , l e n g t h = 5)
2 t r g t V e c <− seq (0 . 5 , 10 , l e n g t h = 5)
3 a l l _ t e s t _ auc <− c ()
4 s e t . s eed (1)
5 k <− 10
6 gam <− 0 . 0 1
7 f o r (i h i n 1 : 5) {
8 f o r (j t r g t i n 1 : 5) {
9 p r i n t (p a s t e (" Running h=" , hVec [i h] , " , t r g t =" ,

t r g t V e c [j t r g t]))
10 i _CUSUM <− i s t a r _CUSUM(C_ f racD _ a l l , h=hVec [i h])
11 i _CUSUM_ t r a i n <− i _CUSUM[i _CUSUM <= l e n g t h (C_

f racD)]
12 ## F e a t u r e m a t r i x ##
13 fMat0 <− g e t _ fMat0 (C_ f racD _ a l l , h , C_ fracD , V_

f racD _ a l l , i _CUSUM, i _CUSUM_ t r a i n)
14

15 # meta l a b e l i n g based on
16 # t h e f r a c D i f f e d c l o s e d p r i c e : C_ f racD _ a l l
17

18 i _CUSUM_ used <− i _CUSUM
19 n_ Event _ used <− l e n g t h (i _CUSUM_ used)
20 e v e n t s <− d a t a . f rame (t 0 = i _CUSUM_ used + 1 , t 1

= i _CUSUM_ used + 200 , t r g t = t r g t V e c [j t r g t] ,
s i d e = r e p (1 , n_ Event _ used))

21 p t S l <− c (1 , 1)
22 ou t0 <− g e t _ feaMat (C_ f racD _ a l l , e v e n t s , p t S l , i

CUSUM used)
23

24 o u t <− s u b s e t (out0 , r e t >= e v e n t s $ t r g t ∗ p t S l [1])
25 fMat <− fMat0
26 Y_ t r a i n <− r e p (0 , n_ Event _ used)
27 Y_ t r a i n [ou t0 $ r e t >= e v e n t s $ t r g t ∗ p t S l [1]] <− 1
28 # 1 f o r p o s i t i v e r e s t u r n s >= t r g t ∗ p t S l [1]
29 X_ t r a i n <− d a t a . f rame (fMat)
30 a l l S e t <− d a t a . f rame (Y = as . f a c t o r (Y_ t r a i n) , C

= as . numer ic (X_ t r a i n $C) , V = as . numer ic (X_ t r a i n
$V) , t F e a = ou t0 $ tFea , t L a b e l = ou t0 $ t L a b e l)

31 a l l _ t b l <− t a b l e (a l l S e t $Y)
32 p r i n t (p a s t e 0 (" The c o m b i n a t i o n o f " , hVec [i h] , "

" , t r g t V e c [j t r g t] , " i s d e c e n t l y b a l a n c e d "))
33 i _CUSUM_ t r a i n <− i n t e r s e c t (i _CUSUM_ t r a i n , i _

CUSUM_ used)
34 t r a i n S e t <− a l l S e t [1 : l e n g t h (i _CUSUM_ t r a i n) ,]
35 t e s t S e t <− a l l S e t [(l e n g t h (i _CUSUM_ t r a i n) + 1) :

nrow (a l l S e t) ,]
36 t r a i n _ t b l <− t a b l e (t r a i n S e t $Y)

37 t e s t _ t b l <− t a b l e (t e s t S e t $Y)
38 i f (any (a l l _ t b l / sum (a l l _ t b l) > 0 . 6) | any (t r a i n _

t b l / sum (t r a i n _ t b l) > 0 . 6) | any (t e s t _ t b l / sum (
t e s t _ t b l) > 0 . 6)) {

39 n e x t
40 } e l s e {
41 i _ j _ auc <− r e t u r n _ auc (cc , C_ f racD _ a l l , hVec [

i h] , C_ fracD , V_ f racD _ a l l , s e q b o o t = F , purged _
k f o l d = T , ih , j t r g t , k , gam , a l l S e t , max_ t ime
= 120)

42 names (i _ j _ auc) <− p a s t e 0 (hVec [i h] , " _ " ,
t r g t V e c [j t r g t])

43 a l l _ t e s t _ auc <− c (a l l _ t e s t _ auc , i _ j _ auc)
44 }
45 }
46 }

• R code for obtaining the AUC value.

1 t r a i n S e t <− as . h2o (CVobj [[i]] $ t r a i n S e t)
2 v a l S e t <− as . h2o (CVobj [[i]] $ t e s t S e t)
3 t e s t S e t 1 <− as . h2o (t e s t S e t)
4 p r i n t (co lnames (t r a i n S e t))
5 bag <− h2o . au toml (x = 2 : 3 , y = 1 , t r a i n i n g _ f rame =

t r a i n S e t , v a l i d a t i o n _ f rame = v a l S e t , s eed = 1 ,
max_ r u n t i m e _ s e c s = max_ t ime , keep _ c r o s s _
v a l i d a t i o n _ models = F , e x c l u d e _ a l g o s = "
DeepLearn ing ")

6 p r i n t (bag)
7 r o c _ prob <− p r e d i c t (bag , newdata = t e s t S e t 1 , t y p e ="

prob ")
8 p red <− p r e d i c t i o n (a s . v e c t o r (r o c _ prob [, 3]) , a s .

v e c t o r (t e s t S e t $Y))
9 auc <− p e r f o r m a n c e (pred , measure = " auc ")@y. v a l u e s

[[1]]
10 p r i n t (auc)
11 r o c _ prob1 <− p r e d i c t (bag , newdata = t r a i n S e t , t y p e

= " prob ")
12 pred1 <− p r e d i c t i o n (a s . v e c t o r (r o c _ prob1 [, 3]) , a s .

v e c t o r (t r a i n S e t $Y))
13 f <− p e r f o r m a n c e (pred1 , " f ")
14 t h r <− f@x . v a l u e s [[1]] [which . max (f@y . v a l u e s [[1]])]
15 p r i n t (t h r)
16 o u t p u t <− as . i n t e g e r (a s . v e c t o r (r o c _ prob [, 3]) > t h r)
17 t b l <− t a b l e (o u t p u t , t e s t S e t $Y)
18 p r i n t (t b l)
19 acc <− (t b l [1 , 1] + t b l [2 , 2]) / sum (t b l)
20 a c c s <− c (accs , acc)
21 aucs <− c (aucs , auc)
22 i f (i ! = k)
23 h2o . removeAl l ()
24 } , e r r o r = f u n c t i o n (e) NULL)
25 }

