Limit order book analysis using Machine Learning

Naveen Mathew Nathan Sathiyanathan!

Department of Statistics, University of Illinois at Urbana-Champaign

(Dated: 9 May 2019)

Limit order data for a day usually exceeds 1 million rows after aggregation. Analyzing or visualizing across multiple
days leads to large number of rows which cannot be stored in memory. The objective of this analysis is to visualize
and preprocess the data at scale and to perform pattern analysis using machine learning. R Shiny application was built
for dynamic visualization of order book data. Using performance enhancement methods, the time for visualization was
reduced to approximately 2 minutes. The analysis was run on 200 days data and performance was tested. Finally, a
machine learning models were built to predict direction of price based on image of volumes. The model outperformed

majority guess.

I. INTRODUCTION

Aggregated limit order data is usually very large. Text file
size is approximately 600 MB. The in-memory size of each
data file exceeds 1.5 GB because of expansion of small nu-
meric counts that are concisely represented as 1 digit in text
format. Therefore, processing multiple files at a time is not
possible even using multiprocessing.

For visualizing limit orders, ‘obAnalytics‘ package was
used. Trades and events data was also required for a com-
plete picture, but this data was not available. Also, the input
data format did not match the format required by the package
for visualization. Thefeore, a scalable method was required to
transform from the raw data format to the required format.

Finally, large scale feature extraction is not possible if all
files are taken simultaneously. Also, the largest file for a par-
ticular ticker may not be the same across days. Therefore, one
file was analyzed at a time and features were derived. The re-
sulting features were concatenated and machine learning was
applied to learn patterns that relate the image of volumes to
the direction of movement of price.

Il. LITERATURE SURVEY

Several attempts were made to apply machine learning for
analyzing patterns in limit order books. Kercheval et al.
(2013) applied machine learning to capture the dynamics of
high frequency limit order books in financial equity markets
and automate real-time prediction of metrics such as mid-
price movement and price spread crossing. SVM is applied
to perform multi-class classification based on vector of at-
tributes such as price and volume at different levels. Exper-
iments showed that the model was useful for short term price
forecasts.

Dixon (2017) used RNN for sequence classification of limit
order books. A short sequence of observations of limit or-
der book depths and market orders was used to predict a next
event price-flip. The paper claims that non-linear dynamics
of near-term price flips was captured by RNN using spatio-
temporal representation of limit order book. The resulting
model compares favorably with linear Kalman filter on SP500
E-mini futures level II data over August 2016.

Nevmyvaka et al. (2006) applied reinforcement learning

to optimized trade execution in financial markets. They used
the model on 1.5 years of millisecond level limit order book
data from NASDAQ. The learning algorithm exploits a nat-
ural low-impact factorization of the state space. Reinforce-
ment learning showed promising results in learning market
microstructures.

Ntakaris et al. (2018) set a benchmark for mid price predic-
tion in high frequency limit orders. They extracted normalized
data representations of time series data for five stocks from the
Nasdaq Nordic stock market for a time period of 10 consecu-
tive days. The resulting data set of 4 million rows were ana-
lyzed and experiments were performed using cross-validation.

Sirignano (2016) modeled the spatial distribution of limit
order books using neural network architecture. It tries to
model the joint distribution of the state of limit order book at a
future time based on the current state of the limit order book.
It was observed that deep learning outperformed logistic re-
gression and exhibits good performance at the tail - which is
important for risk management.

I1l. DATA DESCRIPTION

Data was purchased from proprietary source. It consists of
201 compressed (.zip) files, each of which has 10 categories
of tickers, namely:

- ES (SP 500 E-Mini) - NQ (Nasdaq 100 E-Mini) - 6E (Euro
FX) - 6] (JPY FX) - CL (Crude Oil WTI) - NG (Natural Gas) -
ZN (10-Year T-Note) - GC (Gold) - ZC(Corn) - ZS (Soybeans)

The distribution of number of files in each ticker category
is:

Ticker Category | Number of Tickers
6E 6
6] 6
CL 35
ES 5
GC 22
NG 45
NQ 5
ZC 17
ZN 2
7S 23

Due to pausity of time, the scope is limited to analysis of 6E
(Euro FX). The largest file is chosen in each day and the data
is normalized to account for difference in scales of volumes.
Each ticker file has the following structure:

A. Variables

e Date: Date string in the format of YYYYMMDD.

e Timestamp: Time of the day in HHMMSSsss (s = mil-
lisecond) format.

e Ticker: Name of the ticker.

o Side: BUY/SELL side of the aggregated row.
e Flags: .

e Depth: Total depth of market in given side.

e Level 1-10: 10 columns in "price x volume (orders)"
format.

IV. PREPROCESSING
A. Tick Bar

A tick bar summarizes the open, close, low and high price
over a fixed number of ticks. As an example, it was observed
that a ticker file with 2.5 million rows has around 1.02 mil-
lion distinct timestamps. We will consider only the last row
for each timestamp due to lack of sub-millisecond level data.
Therefore, the maximum number of ticks is 1.02 million for
the chosen file.

For creating tick bars, a threshold of 5 ticks was used. This
resulted in around 204,000 tick bars that were annotated with
mid-price summaries.

B. CUSUM filter

CUSUM (cumulative sum control chart) is a sequential
analysis technique used for detecting change. It can detect
unexpected step changes in a time series. Therefore, it is ideal
for filtering the time bars to come up with a series of potential
signals of price change. The cumulative sum is calculated as:

So=0:;841 = max(ovst + ¥ — Et—l(yt))

S >h — e (LA T i—E1(n) = h

The idea of CUSUM is extended to symmetric CUSUM
filter:

o S =max(0,S" | +y —E—1(y)):S§ =0
o Sy =max(0,S, " +y —E—1(3)):Sy =0

o S, =max(S;",S,)

A feature bar is sampled where the symmetric cumulative
sum exceeds a threshold. Using the symmetric CUSUM filter,
different number of feature bars are sampled per day based on
the amount of variability in the price compared to the expected
distribution of price change.

C. Triple Barrier Labeling

CUSUM filter was used for sampling relevant ticks from
the whole data set. Triple barrier method was used for label-
ing features that were sampled. Triple barrier method uses
three barriers: top, bottom and right. The right barrier is char-
acterized by a pre-defined number of ticks from the sampled
feature bar. The top and bottom barrier are characterized by
return threshold. The label is based on the first bar that is
touched by the series. The labeling is done as follows:

—1 if bottom barrier is hit first
label = < 0 if right barrier is hit first @))
1 if top barrier is hit first

The ‘0° labels were removed because it causes discrep-
ancies in classification and the distinction between ‘-1° and
‘1¢ labels is expected to be clearer. This makes the decision
boundary less flexible, leading to a data set that can fit appro-
priately.

D. Feature Scaling

Volume features for different days will be of different
scales. The hypothesis is that the relative amount of trading
within a day will affect the movement of mid-price. There-
fore, the individual volume columns were 1) scaled to have
mean = 0 and variance = 1 within each column, 2) normalized
to have minimum 0 and maximum 1 across all 10 columns.
The difference in preprocessing is expected to produce dif-
ferent results in the convolution - therefore the preprocessing
step acts like a hyperparameter.

V. EXPLORATORY ANALYSIS
A. Visualizing Prices and Volumes

The data set is structured to have one row per side. The row
contains the summary of the side - with highest to lowest price
from level 1 to level 10 for buy side and lowest to highest price
from level 1 to level 10 for sell side.

The required format for visualization using ‘obAnalytics*
package has 1 row per side-price level combination. This
leads to approximately 20.4 million rows for visualization.
This number exceeds the possibile visualization limit in R us-
ing the package.

It is important to note that creating repeated rows for the
same price-volume combination leads to overlapping colors

on the plot. Therefore, it is beneficial to have only 1 row of
price-volume combination across multiple times if the volume
remains unchanged for a time period. This led to the following
visualization:

FIG. 1. Mid price-time plot colored by volume.

We note that the figure is inaccurate when higher depths
are censored. This occurs when the depth of market exceeds
10 and the volumes in those price levels exceeds reduces to
0. The color scale of the image can be modified based on
transformed values of the volumes at different levels.

B. Tick Bar - Example

FIG. 2. Tick Bar

Note: This example shows sampled ticks, but it is not for

the same ticker as the price-volume plot shown above.

C. CUSUM Filter - Example

Note: This example shows CUSUM filter on the sampled
ticks shown above, but it is not for the same ticker as the price-
volume plot shown above.

150000

FIG. 3. CUSUM Filter

FIG. 4. Triple Barrier Labeling - After Subsetting

D. Triple Barrier Labeling

Note: This example shows CUSUM filter on the sampled
ticks shown above, but it is not for the same ticker as the price-
volume plot shown above.

E. Visualizing Unscaled Features

Features were created by considering the volumes at differ-
ent levels for 3 seconds before the sampled feature bar. These
features are useful in predicting the direction of movement of
the mid price.

BUY SELL

vi
5 10 15 20 25 30

Lo

16 18 20 22 24 26 28
—
B

vi

0 50 100 150 200 250 300 0 50 100 150 200 250 300

tick tick

FIG. 5. Buy-Sell feature example 1

BUY SELL

1

v
10 20 30 40 50
I

T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

tick tick

FIG. 6. Buy-Sell feature example 2

VI. MODELING

Candlestick diagram is very useful in understanding the
movement of prices in limit order book. This inspired the
idea of using image understanding for relating patterns in the
image to the movement in price. The visualization by ‘obAn-
alytics‘ package gives an idea about the importance of scales
of volumes in different levels to the movement of mid price.

A. Convolutional Neural Network

Convolutional neural network is generally used for image
analysis. Convolution operation creates feature maps that ex-
tract useful information from the image. An optional pooling
layer samples from the output of the convolution layer. The
output of one or more convolutions is fed to a dense layer for
classification.

Convolutional neural network can be used to understand
spatio-temporal patterns in volume in limit orders. The raw
volumes can be used instead of using the image plotted from
the raw data as it will have more predictive power. An im-
age of last 3000 milliseconds is created for each feature bar
which is labelled either -1 or 1. This was also downsampled
to 300 observations spaced at 10 milliseconds to understand
the granularity of time required for prediction.

B. Hyperparameters

There are several tunable hyperparameters in the model.
The set of hyperparameters extends to the preprocessing steps
and is not limited to the model. There is a tradeoff between
the following hyperparameters that were used in preprocess-
ing: 1) number of ticks between the feature bar and right bar-
rier in triple barrier method, 2) number of labels created per
day, 3) return threshold for labeling as -1 or 1. Ideally, we re-
quire sufficientnumber of labels per day to build a good model
for prediction - therefore, the right barrier should be closer to
the feature bar. However, if the number of ticks is too low,
then there is no scope for change in mid-price before the right
barrier. Finding the right setting is difficult because each itera-
tion of preprocessing consumes more than 3.5 day (84 hours).
Therefore, the following values were chosen for the hyperpa-
rameters used in preprocessing:

e nTic (tick bar): 5.

e h: 0.2 * daily standard deviation of mid price (dynami-
cally calculated).

e right barrier: 50, 5000 ticks.

o trgt: 0.002 (symmetric), dynamic based on minimum
price change for each ticker.

C. Logistic Regression

The chosen hyperparameters led to average forecast period
of 150 seconds with features lasting for a duration of 3 sec-
onds. This is unrealistic in financial markets. Therefore, the
data set was downsampled to test the hypothesis. The down-
sampling was done to reduce the forecast period to 60 seconds
- features with T,, or Tj, that correspond to 1 minute on av-
erage were used. The resulting data set has 2930 rows. A
train-test ratio of 3:1 was used for splitting the data. Logistic
regression model was built with volumes from last 1 second
as features - nfegrures = 100 x 10 x 2 = 2000. The model led
to few probabilities of O or 1. This was a clear case of overfit.

D. Forward Selection

Logistic regression is likely to overfit because addition of
any new independent variable with finite VIF will lead to
strictly lower residual deviance. In cases where p > n, sta-
tistical significance usually leads to underfitting for predic-
tion. AIC adjusts the residual deviance for residual degrees of
freedom. It usually leads to a reduced feature set with good
bias-variance tradeoff. However, step-wise forward selection
using AIC did not converge in 84 hours. Therefore, a reduced
feature set of 227 variables was used for modeling.

E. Elasticnet Regularization

It was observed that stepwise model did not produce a
good bias-variance tradeoff because of the low signal-noise
ratio. Therefore, regularization was used to improve the bias-
variance characteristic of the model. Simple L1 or L2 reg-
ularization usually leads to under and over fits respectively.
Therefore, elasticnet (linear combination of L1 and L2) regu-
larization was used on logistic regression.

Penalty = A x (ot < ||B||1 + 5% x| B[)

Hyperparameters A and o were tuned using 3-fold cross-
validation.

F. Training Scheme

Training deep learning algorithms such as convolutional
neural networks involves several heuristics. Most of the
heuristics are experimental and may go wrong consistently
based on the loss curve for the data. Therefore, it is essential

to use experimental checks and corrective measures on few
neural network hyperparameters. The commonly used meth-
ods are:

e Adam optimizer (gradient + momentum)

e Early stopping (stop if validation accuracy gets worse
in 3 iterations)

e [earning rate decay (decrease learning rate by a factor
of 0.1 on loss curve plateau)

e Save best iteration (based on validation accuracy)

VIl. RESULTS AND CONCLUSIONS

A. Traditional Machine Learning

It was noted that the traditional machine learning algo-
rithms outperformed deep learning at high thresholds and very
low sample sizes (7000 examples). This is because of overfit-
ting. However, deep learning algorithms clearly outperformed
traditional machine learning algoriths at larger sample sizes
even though the signal to noise ratio was lower than those used
in cases where the sample size was small. Also, the training
time for forward selection using AIC was too high. The for-
ward selection was stopped after 24 hours and the resulting
variables were chosen for analysis.

B. Deep Learning
1. Vulnerability - Initialization

The train-validation-test splitting was made repeatable by
setting a seed. However, it was observed that the process of
learning was not repeatable because of lack of seed in Keras
GPU based training APIs. It was also observed that the con-
vergence and estimates were affected by the initialization of
the parameters in the learning algorithm. This occurred de-
spite the use of training heuristics, use of momentum and
Adam optimization, regularization, etc. due to the low signal
to noise ratio. Therefore, the model was run at least 3 times
for each combination of hyperparameters and the best results
were noted. It should be noted that the best iteration of each
run (based on validation accuracy) is used to identify the best
set of hyperparameters.

2. CNN - Learning Curve

FIG. 7. Learning

3. Depth-wise Separable CNN - Learning Curve

FIG. 8. Learning

C. Models - Summary

Preprocessing

[Modeling

[Train accuracy | NIR | p-value

[Test accuracy (p-value)

= 0.1. trgt = 0.000L, t_{right} = 50

Logistic regression

0,517 [0.517 | 0.500

0,529 0.529 | 0.500]

h = 0.1. trgt = 0.0001, t_{right} = 50

Depth-wise separable
ICNN input (3000, 10, 2) >>

filter: 22 (3% 3) >> ReLU >>

filter: & (3x 3) >> ReLU >>
Dense (8 units) >> output(2 units)

0,517 | 0.517 | 0.500

0.529 | 0.529 | 0.500|

h = 0.1. trgt = 0.0002, t_{right} = 50

Depth-wise separable
CNN input (300, 10, 2) >

fiter: 32 (3% 3) >> ReLU >>

filter: 8 (3 x 3) >> ReLU >>
Dense (8 units) >> output(2 units)

0,517 | 0.517 | 0.500

0.529 | 0.529 | 0.500|

4

h = 0.2 x stdev_{day)
trgt = 0.0002, t_{right} = 5000

Depth-wise separable
CNN input (300, 10, 2) >>

fiter: 2 (3 x 3) >> ReLU >>

filter: 1 (3x 3) >> ReLU >>
Dense (8 units) >> output(2 units)

0,517 | 0.517 | 0.500

0529 0.529 | 0.500|

5|

Subset of case 4 with
max(t_{up}, t {io}) £ 2000

Regulanized logistic regression
Cross-validated alpha = 0.296

0.545 | 0.519 | 0.009),

0537 0.519 | 0.109|

6]trgt = dynamic, t_fright} = 50 Dense (8 units) >> output(2 units)

h = 0.2 x stdev_{day},

h= 0.2 x stdev_{day},
trgt = dynamic. t_{right} = 50

Depth-vise separable
CNN input (100, 10, 2) >>

filter: 2 (3 x 3) >> ReLU >>
filter: 1 (3x 3) »> ReLU »>

0.5026 | 0.5014 | 0.341

0.5014 | 0.5014 | 0.5

Case 6 without depth-wise
separation

0.5026 | 0.5014 | 0.341]

0.5014 | 0.5014 | 0.5|

8|

h = 0.2 x stdev_{day},
trgt = dynamic, t_{right} = 50

Case 7 with rearranged volume
levels

0.5275 | 0.5014 | 0|

0.5071 | 0.5014 | 0.065|

Note: NIR = No Information Rate (accuracy of majority guess). nTic = 5 for each case

FIG. 9. Results

D. Confusion Matrix

Based on the full summary provided in the previous
section, CNN with levels arranged in order of prices
was chosen for prediction. The ordering of columns was:

selllevell(]>selllevel9>) selllevell 7buylevell >buylevel27 '-~7buyleve110

Reference
0 1
. 0 1981 593
Prediction
1 24549 26087
FIG. 10. Confusion Matrix - Train
Reference
0 1
. 0 A027 3926
Prediction
1 4816 4967

FIG. 11. Confusion Matrix - Test

E. Conclusion

Based on the results obtained above, deep learning CNN
model using only the image of last 3 seconds to predict the
label of next 2 seconds (approx.) was the best. It was able to
beat the majority guess by a margin that was statistically sig-
nificant at o = 0.1, but not statistically significant at & = 0.05
where traditional machine learning algorithms failed to beat
the majority guess (p — value > 0.5). The model shows some
signs of overfitting because the train set metrics are much bet-
ter than test set metrics, but this could not be controlled due to
the low signal to noise ratio.

However, this method of using the volumes at different lev-
els is not exactly the same as using the image. This is because
the level of the price was used as proxy for absolute position
of the price in the image, but this idea does not always gener-
alize - when the gap between levell prices of buy and sell is
high or when the volume is 0 at few levels.

VIll. SCOPE FOR IMPROVEMENT

e Use large computational facility with large RAM to en-
able multiprocessing to handle preprocessing step. This
was a bottleneck in the project because preprocessing
took 3.5 days.

e Use other tickers as covariates.

e Tune preprocessing parameters such as nTic, h, trgt
along with model hyperparameters: this is very time
consuming, hence it could not be explored during the
duration of this project.

Arrange the prices of different sides according to their
absolute prices instead of the levels. This is expected to
increase the postprocessing time.

Increasing training data: Create anti-patterns with the
inverted image as features and inverted labels as out-
come.

Label using VWAP (volume weigted average) instead
of mid-price.

Explore other labeling methods other than triple barrier
method.

APPENDIX

A. Code Samples

e Visualizing price-volume patterns

10

def process_buys_row (row):
ret = []
row["Depth"] = int(row["Depth"])
row["shifted_Depth"] = int(row["shifted_Depth"])
Ist = [row][Timestamp’], ’“bid’]
if row["Depth"] > 0:
i=j=1
if row["shifted_Depth"] > 0:
while i <= row["Depth"]:
del_check = False
while row[’p’ + str(i)] < row[’shifted_p’ +
str(j)] and j < row["shifted_Depth"]:
if 1> 1:
if row[’'p” + str(i — 1)]
shifted_p’ + str(j)]:
ret.append(lst + [row[shifted_p’ +
0, 01
del_check =
else:
ret.append(lst + [row][shifted_p’ + str
0, 0]
del_check =
j +=1
if row[p’+str(i)] == row[’ shifted_p +str (]

= row[’

str(j)l,
True

()1,

True

) 1:
if del_check and i > 1:
if row[’'p” + str(i — 1)] == ret[—1][2]:
ret = ret[0:—1]
if row[’'v’ + str(i)]
str(j)1:
ret.append(lst + [row['p’+str(i)], row|[
vi+str(i)], row[o +str(i)]])
else:
ret.append(lst + [row['p’+str(i)], row[vV
+str(i)], row[o +str(i)]])
i +=1
if j < row["shifted_Depth"]:
missing = row[shifted_cols[(3%]j):(3xrow]["
shifted_Depth"])]].values.reshape ((row["
shifted_Depth"] — j, 3)).tolist ()
if type(missing[0]) == list:

= row|[shifted_v’ +

ret = ret + [Ist + x for x in missing]
else:
ret = ret + [lst + missing]
else:
ret = row[all_level_cols[0:(3*xrow["Depth"])

]]. values.reshape ((row["Depth"], 3)).tolist ()

37 if type(ret[0]) == list: 6 min(tt , nBar)
38 ret = [Ist + x for x in ret] 7 b
39 else: 8 trgt <— events$trgt
40 ret = [Ist + ret] 9 side <— events$side
41 ret = np.array(ret) 10 u <— ptSI[1]
) if ret.shape[0] == O: 1" 1 <— ptS1[2]
3 ret = np.array ([Ist + [0.0, 0.0, 0.0]]) 12 T up <— T_lo <— label <— NULL
44 return ret 13 out <— sapply(1l:length(t0), function(i) {
45 14 i_t0 <— tO[i]
46 15 i_tl <— min(tl[i], length(x))
47 def process_buys_df(df): 16 i_x <— x[1_t0:i_t1]
48 return df.apply (process_buys_row , axis = 1) 17 i_nx <— length(i_x)
18 i_trgt <— trgt[i]
| splits = mp.cpu_count() — 1 19 i_side <— side[i]
> p = mp.Pool(processes = splits) 2 if (i_side == 0) {
5 split_dfs = np.array_split(buys, splits) 21 Up <= I_trgt s
. pool_results = p.map(process_buys_df, split_dfs) 22 %0 &= n_urgi = 1
5 p.close () 23 isup <— (i_x/i_x[1] — 1) >= up
6 p.join () 24 islo <— —(i_x/i_x[1] — 1) >= lo
7 bys = pd.concat(pool_results , axis = 0) 25 T_up <— ifelse (sum(isup) > 0, min(which(isup)
) o
i plotPriceLevels (depth, spread, volume.scale = 1, 2 o Inf)‘)))
col.bias = 0.25, show.mp = T, 27 T lo <— ifelse (sum(islo) > 0, min(which(islo)
: start.time = as.POSIXct("2016—03—10)
00:00:00.000"), 2 Lutit)
3 end.time = as.POSIXct("2016—03—11 » .
00:00:00.000")) 30 else if (i_side == 1) {
31 up <— i_trgt x u
. 32 isup <— (i_x/i_x[1] — 1) >= up
e Extracting volume features for last 3 seconds 53 T up <— ifelse (sum(isup) > 0, min(which(isup)
1 all_features_df <— lapply (cusum_df$Timestamp ,) Tl)
function (timestamp) { , T lo <— Inf
2 df <— data.frame (Timestamp = seq(timestamp f } -
—3, timestamp —0.001, by = 0.001), “ else {
3 stringsAsFactors = F) } .
s df$Side <— "BUY" fo <= i_trgt « 1
i afl < df 39 islo <— —(i_x/i_x[1] — 1) >= lo
’ . ., . 40 T_up <— Inf
(j gfliflfﬁi:;(diELI&fl) 4 T_lo <— ifelse (sum(islo) > 0, min(which(islo)
8 df <— merge(df, last_df, all.x =T, all.y = -) L)
F, by = c¢("Timestamp", "Side")) 4? }
N ict‘?(ligjaszgggff[ﬁ;’;“a{m“(df)’ Timestamp®™) ret < i x[min(T_up, T lo, i nx)]/i x[1] — 1
| dfi.<— last_df[last_df$Timestamp < df$ 15 label <— which.min(c(T_lo, i_nx + 1le—06, T up))
3 ~ o 0 5 -2
12 TlmeSthflf[i—] i‘fll?s:o_v;l(fifll()ie]—— s 16 rst <— c¢(T_up, T lo, length(i_x), ret, label)
B set(df, 1, cols, as.list(dfl[1, cols, v return(rst)
with = F])) “ D
) 49 out <— data.frame(t(out))
lj if (is.na(df$pl[21)) { 50 names (out) <— c("T_up", "T_lo", "tl", "ret", "
. - . label")
E df2 < df2[nrow(df2),] 2 R T e
8 set(df, 2, cols, as.list(df2[1, cols w out$tLabel <= 0 — 1 + applyCout[, c("T_up", "T_
g o , 2, 5 . > > lo", "t1")],
) W”h}‘ F1) 54 1, min)
. N . 55 if (ex_vert == T) {
N ;“r : ‘;?{?i;“g?ggi; 5 df_list <— subset(df_list, !(is.infinite (out$T_
» df <— df[seq(10, nrow(df), by = 10),] , o) ¢ ‘S"“f‘“‘te(o,“@T—?O)?). .
N return (df) 57 out <— subset(out, !(is.infinite(T_up) & is.
;4 1 infinite (T_lo)))
- 58
59 return(list(out = out, df_list = df_list))
e Labeling and subsetting features with labels in {-1, 1} 60}
i label _meta <— function (x, events, ptSl, ex_vert =
T, n_ex = 0, df_list = NULL) e Scaling daily volumes based on highest and lowest vol-
2 ume of the day
3 nBar <— length (x)
4 t0 <— events$t0 1 max_arr <— rep(—1, length(files))
5 tl <— sapply(events$tl, function(tt) { > min_arr <— rep (100000, length(files))

3 for (i

4

in l:length(files)) {

all_features_df <— readRDS(paste0("data/modeling/
all_features_df/", files[i]))

all _features_df[["ticker_file"]] <— NULL

rows <— rows + length(all_features_df)

if (length (all_features_df) > 0) {
max_arr[i] <— max(max_arr[i], max(sapply(all_
features_df, function (df)

max(df[, volume_cols]))))

min_arr[i] <— min(min_arr[i],
features_df, function (df)

min(df[, volume_cols]))))

min(sapply (all_

}

"

clusterExport(cl, c("volume_cols", "min_arr", "max_
arr"))

mat <— matrix(c(—1, 1)*pi, nrow = rows, ncol =
6001)

mat <— matrix(c(—1, 1)xpi, nrow = rows, ncol =

60001)

finished <— 0
for (i

in l:length(files)) {

all_features_df <— readRDS(paste0("data/modeling/
all_features_df/", files[i]))

BUY vl to v10, SELL vl to v10, BUY vl to vl10,

clusterExport(cl, "i")

all _features_dfl <— parLapply(cl,
, function (df) {

all _features_df

if (class (df) == "data.frame") {
Order step: BUY vl to v10, SELL vl to vl10,
BUY vl to v10,
df <— df[order(df$Timestamp, df$Side) ,] B.
df [df$Side == "BUY", volume_cols] <—
(df[df$Side == "BUY", volume_cols] — min_
arr[i])/(max_arr[i] — min_arr[i])
df[df$Side == "SELL", volume_cols] <—
(df[df$Side == "SELL", volume_cols] — min_
arr[i])/(max_arr[i] — min_arr[i])
df[df$Side == "BUY", volume_cols] <— scale(
df [df$Side == "BUY", volume_cols])
df[df$Side == "SELL", volume_cols] <— scale
(df[df$Side == "SELL", volume_cols])

df$split <— 1:nrow(df)
df_list <— split(df, df$split)
df_final <— lapply(df_list, function(row) row
[, volume_cols])
df _final <— do.call(cbind,
return (df_final)
}
1)

df _final)

39

40

55

57
58
59

60

}

all_features_dfl1[["ticker_file"]] <— NULL

all _features_dfl <— do.call(rbind, all_features_
dfl)

file <— filenames[[1]][1]

labels <— readRDS(paste0("data/modeling/labels/",
file , "_labels.Rds"))

all _features_dfl <— data.frame(all_features_dfl)

all _features_dfl$label <— labels$label

all_features_dfl <— as.matrix (data.frame (sapply (
all_features_dfl, unlist)))

if (ncol(all_features_dfl) != 60001 & nrow(all_
features_dfl) == 60001) {
all_features_dfl <— t(all_features_dfl)

} else if(ncol(all_features_dfl) != 6001 & nrow(
all _features_dfl) == 6001) {
all_features_dfl <— t(all_features_dfl)

}

if (nrow(all_features_dfl) > 0) {
mat[(finished+1):(finished + nrow(all_features
dfl1)),] <— all_features_dfl
finished <— finished + nrow(all_features_dfl)
if (length(all_features_df) != (nrow(labels)+1))
{

print(file)

}

}
print (dim(all_features_dfl))

full_df <— rbind(full_df, all_features_dfl)

References

e Deep learning for limit order books (Sirignano, 2016)

e Modeling high-frequency limit order book dynamics

with support vector machines (Kercheval et al., 2013)

e Sequence classification of the limit order book using

Recurrent Neural Networks (Dixon, 2017)

e Reinforcement learning for optimized trade execution

(Nevmyvaka et al., 2017)

e Benchmark dataset for mid-price forecasting of limit or-

der book data with machine learning methods (Ntakaris
et al., 2018)

