t-GLM: A generalization of logistic regression using information theory

Naveen Mathew Nathan S.
9/27/2019

Introduction

The definition of cross-entropy in statistics is $L(y, p)=\prod_{i=1}^{K} p_{i}^{y_{i}} ; C E(y, p)=-\log (L(y, p))=-\left[\sum_{i=1}^{K} y_{i} *\right.$ $\left.\log \left(p_{i}\right)\right]$, where K is the number of classes. This simplifies to $L(y, p)=p^{y} *(1-p)^{1-y} \Longrightarrow C E(y, p)=$ $-[y * \log (p)+(1-y) * \log (1-p)]$. Therefore, the total likelihood (for a logistic regression model) can be written as $L(\mathbf{y}, \mathbf{p})=\prod_{j=1}^{n} p_{j}^{y_{j}} *\left(1-p_{j}\right)^{1-y_{j}} \Longrightarrow C E(\mathbf{y}, \mathbf{p})=-\left[\sum_{j=1}^{n} y_{j} * \log \left(p_{j}\right)+\left(1-y_{j}\right) * \log \left(1-p_{j}\right)\right]$ assuming all the examples are independent. Interestingly, the logistic regression model simplifies to a link function of the form: $X_{j} \beta=\eta_{j}=h\left(p_{j}\right)=\operatorname{logit}\left(p_{j}\right)=\ln \left(\frac{p_{j}}{1-p_{j}}\right)$. We know that the logit link does not fit all types of data. Is it possible to come up with a new link function that is universally better than logit link? The answer is yes.

New (inverse) link function

$h(\eta, t)=\frac{1}{t} \ln \left(\frac{2+t \eta}{2-t \eta}\right)$
Equating with logistic regression $\Longrightarrow \ln \left(\frac{p}{1-p}\right)=\frac{1}{t} \ln \left(\frac{2+t \eta}{2-t \eta}\right) \Longrightarrow t * \ln \left(\frac{p}{1-p}\right)=\ln \left(\left(\frac{p}{1-p}\right)^{t}\right)=\ln \left(\frac{2+t \eta}{2-t \eta}\right)-$ equation 1
Assuming the quantity within the bracket on RHS of equation 1 is positive, applying componendo and dividendo: $\left(\frac{p}{1-p}\right)^{t}+1=\frac{4}{2-t \eta} \Longrightarrow \eta=\frac{2\left[\left(\frac{p}{1-p}\right)^{t}-1\right]}{t\left[\left(\frac{p}{1-p}\right)^{t}+1\right]}$
Applying limit and L'Hospital rule: $\lim _{t \rightarrow 0} \eta=\lim _{t \rightarrow 0} \frac{2\left(\frac{p}{1-p}\right)^{t} \ln \left(\frac{p}{1-p}\right)}{\left(\frac{p}{1-p}\right)^{t}+1+t\left(\frac{p}{1-p}\right)^{t} \ln \left(\frac{p}{1-p}\right)}=\ln \left(\frac{p}{1-p}\right)$
Therefore, the new link function carries the same properties as logistic regression when $t=0$. Also, we observe that the link is symmetric about $\mathrm{t}=0: h(\eta,-t)=\frac{1}{-t} \ln \left(\frac{2-t \eta}{2+t \eta}\right)=\frac{1}{t} \ln \left(\frac{2+t \eta}{2-t \eta}\right)=h(\eta, t)$
Therefore, a model with the new link function is guaranteed to perform at par with logistic regression for $\mathrm{t}=$ 0 . By tuning t using cross validation it will perform better than logistic regression

The mathematics

Condition for being a proper link

Unlike the logit link that applies to the whole range of η, the set of parameters in the updated link is restricted. This is because in the above derivation we assumed that the term within the bracket on RHS of equation 1 is positive. Let us examine it carefully:
$\frac{2+t \eta}{2-t \eta}>0 \Longrightarrow(2+t \eta)(2-t \eta)>0$ assuming $(2-t \eta) \neq 0$
$\Longrightarrow-2<t \eta<2$ which may not be satisfied if we have random x on testing sets that has larger absolute value of η than the training set

Reasonable adjustment

Reasonable thresholds can be established to ensure that the mathematical inaccuracy can be avoided. For example, for any η we defined $p=1$ if $t \eta \geq 2$ and $p=0$ if $t \eta \leq-2$

Link, inverse link, gradient of inverse link

Link function

From the previous derivation we observe that the link $\eta=\frac{2\left[\left(\frac{p}{1-p}\right)^{t}-1\right]}{t\left[\left(\frac{p}{1-p}\right)^{t}+1\right]}$

Inverse link

From the definition, the inverse link is given by $\operatorname{logit}(p)=\frac{1}{t} \ln \left(\frac{2+t \eta}{2-t \eta}\right)=\ln \left(\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}}\right) \quad \Longrightarrow \quad \frac{p}{1-p}=$ $\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}} \Longrightarrow p=\frac{\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}}}{\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}}+1}$

Gradient of link inverse with respect to η

$\nabla_{\eta} g=\frac{1}{t} * \frac{2-t \eta}{2+t \eta} * \frac{(2-t \eta) * t-(2+t \eta) *(-t)}{(2-t \eta)^{2}}=\frac{4}{4-t^{2} \eta^{2}}$
$\nabla_{\eta} p:$ Let $x=\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}} ; d x=\frac{1}{t}\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1}{t}-1} \frac{t *(2-t \eta)-t *(2+t \eta)}{(2-t \eta)^{2}}=-\frac{2}{t}\left(\frac{2+t \eta}{2-t \eta}\right)^{\frac{1-t}{t}} \frac{t^{2} \eta^{2}}{(2-t \eta)^{2}}$

Putting things together: Newton method

$L(\mathbf{x}, \beta)=\prod_{i=1}^{n} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \Longrightarrow \hat{\beta}=\operatorname{argmax} L(\mathbf{x}, \beta)$
Since \log is a monotonous transformation, it does not change the actual value(s) of β for which the likelihood is maximized. Therefore, $l(\mathbf{x}, \beta)=\log (L(\mathbf{x}, \beta)) \Longrightarrow \hat{\beta}=\operatorname{argmax}_{\beta} L(\mathbf{x}, \beta)=\operatorname{argmax}_{\beta} l(\mathbf{x}, \beta)$
$l(\mathbf{x}, \beta)=\log \left(\prod_{i=1}^{n} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}\right)=\sum_{i=1}^{n}\left[y_{i} \log \left(\frac{p_{i}}{1-p_{i}}\right)+\log \left(1-p_{i}\right)\right]=\sum_{i=1}^{n}\left[\log \left(p_{i}\right)-\left(1-y_{i}\right) x \beta\right]$
Differentiating with respect to beta gives $\nabla_{\beta} p$ which is related to $\nabla_{\eta} p$ that was calculated above. Further, the Hessian matrix can also be calculated for the loss with respect to β. Finally Newton's second order optimization update can be applied: $\beta:=\beta-H^{-1} J$

